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ACCESSING TIME STAMPS DURING
TRANSACTIONS IN A PROCESSOR

RELATED APPLICATION

The instant application is a non-provisional application
from, and hereby claims priority under 35 U.S.C. §120 to,
U.S. provisional patent application No. 61/639,708, which is
titled “Processor System and Methods for Safely Accessing
Time Stamps in Transactions,” by inventors Martin T.
Pohlack and Stephan Diestelhorst, which was filed on 27 Apr.
2012, and which is incorporated by reference.

BACKGROUND

1. Field

The described embodiments relate to computing devices.
More specifically, the described embodiments relate to
accessing time stamps during transactions in a processor in a
computing device.

2. Related Art

In some existing processors, one or more instructions in
program code may be grouped into what is called a “critical
section.” In these processors, before executing a critical sec-
tion, an executing entity (e.g., processor core, thread, etc.)
acquires a lock (e.g., by writing a 1 to a lock variable). The
entity then executes the program code in the critical section,
releasing the lock (e.g., by writing a 0 to the lock variable)
when finished executing the critical section. The lock, once
acquired, prevents the concurrent execution of the critical
section or another critical section that is protected by the same
lock by another entity (e.g., processor core, thread, etc.). In
other words, in these processors, instructions in two or more
critical sections that are protected by the same lock are mutu-
ally exclusive and thus should not be executed concurrently.
This mutual exclusion property of critical sections can be
referred to as “single lock atomicity” or “SLA.”

Some existing processors support “transactional memory.”
Transactional memory is typically implemented in a proces-
sor by enabling entities (e.g., processor cores, threads, etc.)
on the processor to execute sections of program code in
“transactions,” during which program code is executed nor-
mally, but transactional operations are prevented from per-
manently effecting the architectural state of the processor. For
example, memory accesses (reads and writes) are allowed
during transactions, but transactional writes may be held
locally and prevented from being committed to one or more
levels of a memory hierarchy in the processor during the
transaction. In these processors, during transactions, memory
accesses from other entities are monitored to determine if a
memory access from another entity interferes with a transac-
tional memory access (e.g., if another entity writes data to a
memory location read during the transaction, etc.) and trans-
actional operations are monitored to ensure that an error
condition has not occurred. If an interfering memory access
or an error condition is detected during the transaction, the
transaction is aborted, a pre-transactional state of the entity is
restored, and the entity may retry the transaction (or some
error-handling routine may be performed). Otherwise, if the
entity completes the transaction by executing the section of
program code without encountering an interfering memory
access or an error condition, the entity commits the transac-
tion, which includes committing the held transactional opera-
tions (writes, state changes, etc.) to the architectural state of
the processor.

In some transactional memory processors, to enable more
efficient execution, the above-described critical sections are
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executed in transactions. In these processors, upon encoun-
tering a critical section, the processor does not acquire the
lock (called “lock elision™), but, instead, executes the critical
section in a transaction, perhaps concurrently with one or
more other transactions that are being performed for critical
sections that are protected by the same lock. The replacement
of lock-based critical sections with transactions generally
provides the appearance to entities on the processor that the
critical sections have not been executed concurrently. How-
ever, in certain cases, this appearance can be lost and hence
violations of SLA can become apparent. For example, some
processors provide instructions such as read time stamp
counter and processor (or “RDTSCP”) that enable entities to
acquire a current time in the processor (a “time stamp”).
These time stamps are often used to determine order between
events. Because time-stamp acquisition instructions can
appear in critical sections, when two or more critical sections
are executed concurrently in transactions, one or more of the
transactions could acquire time stamps that indicate/prove
that the critical sections were not executed mutually exclu-
sively.

One possible technique for handling a transactional time
stamp acquisition is to simply abort the transaction upon
detecting an instruction that acquires a time stamp. However,
because time stamp acquisition occurs fairly frequently in
program code, accepting this simple solution can lead to
inefficient operation (i.e., a larger percentage of transactions
than need to be may be aborted).

SUMMARY

The described embodiments include a processor that
handles operations during transactions. In these embodi-
ments, the processor comprises one or more cores. During
operation, at least one core is configured to monitor the acqui-
sition of time stamps during transactions. The at least one core
is further configured to prevent the acquisition of time stamps
that meet predetermined conditions.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 presents block diagram of'a processor in accordance
with some embodiments.

FIG. 2 illustrates a case in which linearizability is violated
because an overlap of time stamp intervals exists between
transactions.

FIG. 3 illustrates a case in which linearizability is violated
because a mismatch exists between a memory access order
and a time stamp order for transactions.

FIG. 4 illustrates a case in which strong temporal isolation
is not observed.

FIG. 5 illustrates a case showing that strong temporal iso-
lation should be used to avoid an apparent violation of SLA.

FIG. 6 presents a timeline diagram illustrating a violation
of a constraint in accordance with some embodiments.

FIG. 7 presents a timeline diagram illustrating a violation
of a constraint in accordance with some embodiments.

FIG. 8 presents a timeline diagram illustrating a violation
of a constraint in accordance with some embodiments.

FIG. 9 presents a flowchart illustrating a process for
executing a transaction in the presence of time-stamp acqui-
sition instructions in accordance with some embodiments.

FIG. 10 presents a flowchart illustrating a process for
executing a transaction in the presence of time-stamp acqui-
sition instructions in accordance with some embodiments.

FIGS. 11A-11B (collectively “FIG. 11”) present a flow-
chart illustrating a process for executing a transaction in the
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presence of time-stamp acquisition instructions in accor-
dance with some embodiments.

FIGS. 12A-12B (collectively “FIG. 12”) present a flow-
chart illustrating a process for executing a transaction in the
presence of time-stamp acquisition instructions in accor-
dance with some embodiments.

FIG. 13 presents a flowchart illustrating a process for
executing a transaction in the presence of time-stamp acqui-
sition instructions in accordance with some embodiments.

Throughout the figures and the description, like reference
numerals refer to the same figure elements.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the described embodi-
ments, and is provided in the context of a particular applica-
tion and its requirements. Various modifications to the
described embodiments will be readily apparent to those
skilled in the art, and the general principles defined herein
may be applied to other embodiments and applications with-
out departing from the spirit and scope of the described
embodiments. Thus, the described embodiments are not lim-
ited to the embodiments shown, but are to be accorded the
widest scope consistent with the principles and features dis-
closed herein.

In some embodiments, a computing device (e.g., processor
100, core 102, etc. in FIG. 1) uses code and/or data stored on
a computer-readable storage medium to perform some or all
of the operations herein described. More specifically, the
computing device reads the code and/or data from the com-
puter-readable storage medium and executes the code and/or
uses the data when performing the described operations.

A computer-readable storage medium can be any device or
medium or combination thereof that stores code and/or data
for use by a computing device. For example, the computer-
readable storage medium may include, but is not limited to,
volatile memory or non-volatile memory, including flash
memory, random access memory (eDRAM, RAM, SRAM,
DRAM, DDR, DDR2/DDR3/DDR4 SDRAM, etc.), read-
only memory (ROM), and/or magnetic or optical storage
mediums (e.g., disk drives, magnetic tape, CDs, DVDs). In
the described embodiments, the computer-readable storage
medium does not include non-statutory computer-readable
storage mediums such as transitory signals.

In some embodiments, one or more hardware modules are
configured to perform the operations herein described. For
example, the hardware modules can comprise, but are not
limited to, one or more processors/processor cores/central
processing units (CPUs), application-specific integrated cir-
cuit (ASIC) chips, field-programmable gate arrays (FPGAs),
caches/cache controllers, embedded processors, microcon-
trollers, graphics processors (GPUs)/graphics processor
cores, Accelerated Processing Units (APUs), pipelines, and/
or other programmable-logic devices. When such hardware
modules are activated, the hardware modules perform some
or all of the operations. In some embodiments, the hardware
modules include one or more general-purpose circuits that are
configured by executing instructions (program code, micro-
code/firmware, etc.) to perform the operations.

In some embodiments, a data structure representative of
some or all of the structures and mechanisms described herein
(e.g., processor 100, a core, and/or some portion thereof) is
stored on a computer-readable storage medium that includes
a database or other data structure which can be read by a
computing device and used, directly or indirectly, to fabricate
hardware comprising the structures and mechanisms. For
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example, the data structure may be a behavioral-level descrip-
tion or register-transfer level (RTL) description of the hard-
ware functionality in a high level design language (HDL)
such as Verilog or VHDL. The description may be read by a
synthesis tool which may synthesize the description to pro-
duce a netlist comprising a list of gates/circuit elements from
a synthesis library that represent the functionality of the hard-
ware comprising the above-described structures and mecha-
nisms. The netlist may then be placed and routed to produce
a data set describing geometric shapes to be applied to masks.
The masks may then be used in various semiconductor fab-
rication steps to produce a semiconductor circuit or circuits
corresponding to the above-described structures and mecha-
nisms. Alternatively, the database on the computer accessible
storage medium may be the netlist (with or without the syn-
thesis library) or the data set, as desired, or Graphic Data
System (GDS) II data.

In the following description, functional blocks may be
referred to in describing some embodiments. Generally, func-
tional blocks include one or more interrelated circuits that
perform the described operations. In some embodiments, the
circuits in a functional block include circuits that execute
program code (e.g., machine code, firmware, etc.) to perform
the described operations.

In the following description, terms such as “first” and “sec-
ond,” and the like may be used to distinguish one entity or
action from another entity or action without necessarily
requiring or implying an ordered relationship between the
indicated entities or actions. Numerical ordinals such as
“first,” “second,” etc. therefore simply indicate different indi-
vidual entities or actions from a plurality of entities or actions,
and do not necessarily indicate an order or sequence.

TERMINOLOGY

In the following description, some of the following terms
may be used in describing embodiments. Note that this sec-
tion provides basic/general explanation of the meaning of the
terms, however, the explanations of the terms are simpli-
fied—some of the terms (e.g., hardware transactional
memory, etc.) may have significant additional aspects that are
not recited herein for clarity and brevity.

Critical section: in some embodiments, a critical section is
a section of program code that comprises a lock acquisition
instruction, one or more instructions to be executed, and a
lock release instruction. When executing a critical section, the
executing entity (e.g., processor core, thread, etc.) first
executes the lock instruction, which causes the entity to
acquire the lock (e.g., to write a first predetermined value such
as 1 to a lock variable). The entity then executes the one or
more instructions from the critical section. After executing
the one or more instructions from the critical section, the
entity executes the lock release instruction, which causes the
entity to release the lock (e.g., to write a second predeter-
mined value such as 0 to the lock variable).

Single lock atomicity (“SLA”): in some embodiments, a
rule that, as long as an acquired lock is held by an entity
executing a critical section, other entities should be prevented
from executing the critical section and/or any other critical
section that is protected by the same lock. This may also be
called “mutual exclusion” for critical sections.

Hardware transactional memory (“HTM”): in some
embodiments, transactional memory is implemented in a pro-
cessor (e.g., processor 100) by enabling entities (e.g., proces-
sor cores, threads, etc.) on the processor to execute sections of
program code in “transactions,” during which program code
is executed normally, but transactional operations are pre-



US 9,286,111 B2

5

vented from permanently effecting the architectural state of
the processor. For example, memory accesses (reads and
writes) are allowed during transactions, but transactional
writes may be held locally and prevented from being com-
mitted to one or more levels of a memory hierarchy in the
processor during the transaction. In these processors, during
transactions, memory accesses from other entities are moni-
tored to determine if a memory access from another entity
interferes with a transactional memory access (e.g., if another
of the entities writes data to a memory location read during
the transaction, etc.) and transactional operations are moni-
tored to ensure that an error condition has not occurred. If an
interfering memory access or an error condition is detected
during the transaction, the transaction is aborted, a pre-trans-
actional state of the entity is restored, and the entity may retry
the transaction (or some error-handling routine may be per-
formed). Otherwise, if the entity completes the transaction by
executing the section of program code without encountering
an interfering memory access or an error condition, the entity
commits the transaction, which includes committing the held
transactional operations (writes, state changes, etc.) to the
architectural state of the processor (thereby making the
results of the held transactional operations visible to and
usable by other entities on the processor).

Hardware lock elision (“HLE”): in some embodiments, a
processor (e.g., processor 100) uses HITM mechanisms to
execute critical sections in transactions. In these embodi-
ments, the processor ignores the lock acquisition instructions
at the beginning of critical sections (and hence does not
acquire the corresponding lock—herein called “lock elision™)
and instead executes the critical sections in transactions. In
these embodiments, the lock acquisition instruction and the
lock release instruction (which is also ignored) serve as indi-
cators of the start and end/commit of a transaction for the
critical section. As with other types of transactions, in some
embodiments, the processor may execute a transaction for a
critical section concurrently with one or more other transac-
tions that are being performed for critical sections that are
protected by the same lock. During the transaction for the
critical section, the processor monitors transactional memory
accesses and operations and aborts the transaction for the
critical section upon encountering an interfering memory
access or error condition. In some embodiments, as described
herein, the processor also monitors the acquisition of time
stamps during these transactions and prevents certain types of
time-stamp acquisition.

Overview

The described embodiments include a processor that com-
prises hardware transactional memory (HTM) mechanisms
for executing program code using transactions. To improve
the performance of the processor when executing lock-pro-
tected critical sections in program code, the HTM mecha-
nisms are used for hardware lock elision (HLE), which
enables the execution of critical sections in transactions. This
execution of critical sections in transactions includes the con-
current execution of multiple critical sections that are pro-
tected by the same lock in transactions, an operation that was
not possible using traditional lock-based critical sections.

Because critical sections are generally bound by a require-
ment (single lock atomicity or SLA) that they appear to have
been executed mutually exclusively, improper use of HLE
can result in violations of SLLA becoming apparent. For
example, when transactions are used to execute two or more
critical sections that include time-stamp acquisition instruc-
tions such as read time stamp counter (RDTSC), read time
stamp counter and processor (RDTSCP), etc., a violation of
SLA can become apparent when the time-stamp acquisition
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instructions (perhaps in combination with other transactional
or non-transactional instructions such as memory access
instructions) result in time stamps that show that the critical
sections were executed concurrently. However, the described
embodiments monitor the execution of transactions with
time-stamp acquisition instructions and perform various
operations such as aborting transaction(s), etc. to avoid a
situation where time stamps could be used to determine that
the critical sections were executed concurrently.

Processor

FIG. 1 presents a block diagram illustrating a processor
100 in accordance with some embodiments. Processor 100 is
generally a device that performs computational operations.
As shown in FIG. 1, processor 100 comprises cores 102-108,
system memory 110, memory management unit 112, input/
output interface 114, clock source 116/clock signal 118, time
stamp counter 122, hardware transactional memory mecha-
nism (“HTM”) 124, and hardware lock elision mechanism
(“HLE”) 126. Processor 100 is coupled to interconnect 120.

Each of cores 102-108 includes a computational mecha-
nism such as a central processing unit (CPU), a graphics
processing unit (GPU), an Accelerated Processing Unit
(APU), and/or an embedded processor that is configured to
perform computational operations in processor 100.

Memory 110 comprises memory circuits that form a “main
memory” of processor 100. Memory 110 is used for storing
instructions and data for use by the processor cores 102-108
and other functional blocks on processor 100. In some
embodiments, main memory 110 is fabricated from one or
more of static random access memory (SRAM), dynamic
random access memory (DRAM), double data rate synchro-
nous DRAM (DDR SDRAM), and/or other types of memory
circuits. Memory management unit 112 controls access to
memory 110 and external memory (not shown) accessed via
the input/output (I/0) interface 114 and an interconnect 120.

Clock source 116 provides a clock signal 118 that is gen-
erally used for synchronizing operations on processor 100. In
some embodiments, clock signal 118 is used for maintaining
a current time on processor 100.

Time stamp counter 122 is a high-resolution counter that is
used for determining time stamps in processor 100. In some
embodiments, time stamp counter 122 is generated from/
based on clock signal 118. During operation, upon one of
cores 102-108 executing a time-stamp acquisition instruction
such as a read time stamp counter and processor (“RDTSCP”)
instruction, processor 100 acquires a current time stamp
(which may be a representation of a current time in the pro-
cessor or a time derived from the current time) from time
stamp counter 122 and returns the time stamp to the request-
ing core. As described in more detail below, in some embodi-
ments, the acquisition of time stamps during transactional
execution of critical sections is subject to various constraints.

Hardware transactional memory mechanisms (“HTM”)
124 includes functional blocks, circuits, components, etc. that
are used for performing functions associated with executing
program code using hardware transactional memory. For
example, HTM 124 may include one or more mechanisms for
recording when program code is being executed transaction-
ally, one or more mechanisms for retaining a pre-transac-
tional state of some or all of processor 100, one or more
mechanisms for keeping track of transactional and non-trans-
actional memory accesses and/or error conditions, one or
more mechanisms for keeping track of time-stamp acquisi-
tion instructions encountered in transactions, etc. Note that,
although shown in a single location in FIG. 1, in some
embodiments, some or all of HTM 124 is located elsewhere in
processor 100. For example, in some embodiments, each core
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102-108 includes an independent HTM 124 for executing
program code on the core in transactions.

Hardware lock elision mechanism (“HLE”) 126 includes
one or more functional blocks, circuits, components, etc. that
are used for eliding (removing) locks from program code
being executed by processor 100. In some embodiments,
critical sections in program code comprise a lock acquisition
instruction, one or more instructions to be executed, and a
lock release instruction. In these embodiments, HLE 126 can
remove the lock instructions (e.g., cause processor 100 to
ignore the lock acquisition and lock release instructions, etc.),
and can cause processor 100 to execute the critical sections in
transactions (including concurrently executing two or more
critical sections protected by the same lock in transactions).
In some embodiments, when executing critical sections in
transactions, processor 100 uses the techniques herein
described to avoid creating apparent violations of SLA for the
critical sections. Note that, although shown in a single loca-
tion in FIG. 1, in some embodiments, some or all of HLE 126
is located elsewhere in processor 100. For example, in some
embodiments, each core 102-108 includes an independent
HLE 126 for executing program code on the core.

Although processor 100 is presented in FIG. 1 with certain
functional blocks/devices (i.e., cores 102-108, memory 110,
etc.), processor 100 has been simplified for the purpose of this
description; in some embodiments, processor 100 includes
more or fewer functional blocks. For example, in some
embodiments, processor 100 includes a different number of
cores, e.g., 1, 7, 16, etc. cores. As another example, in some
embodiments, processor 100 comprises additional functional
blocks/devices, such as power supplies/controllers, fans,
mass-storage devices such as disk drives or large semicon-
ductor memories, batteries, media processors, communica-
tion mechanisms, networking mechanisms, display mecha-
nisms, etc.

Linearizability for Transactions

In the described embodiments, critical sections that are
protected by the same lock can be executed concurrently in
transactions using HLE. Generally, when executing critical
sections transactionally, if it becomes possible to determine
that the critical sections were executed concurrently, a viola-
tion of SLA becomes apparent. Thus, in some embodiments,
the property of linearizability (or strict serializability) is
maintained for transactions in which critical sections are
executed. In order for transactions to meet linearizability,
there should be an order to the transactions that is both
sequential/serializable and in a proper precedence order with
regard to operations performed by processor 100. The follow-
ing examples illustrate linearizability for transactions.

Note that in FIGS. 2-3, “transactions” are described as
performing operations such as setting variables to values and
acquiring time stamps. However, in some embodiments, one
or more instructions executed during the transaction (i.e.,
transactionally-executed memory access instructions, time-
stamp acquisition instructions, etc.) perform the indicated
operations. In addition, transactional beginnings and endings
are indicated using “begin” and “end” in the tables in FIGS.
2-3. In some embodiments, transactions begin when proces-
sor 100 (e.g., core 102, etc.) encounters an indication in
program code that a transaction should begin or end. For
example, when executing critical sections in transactions, the
processor may encounter a lock-acquisition instruction (be-
gin) or a lock-release instruction (end) in program code.
Generally, the operations shown in FIGS. 2-5 are performed
by processor 100 in response to executing one or more cor-
responding instructions in program code.
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FIG. 2 illustrates a case in which linearizability is violated
because an overlap of time stamp intervals exists between
transactions. Generally, an overlap of time stamp intervals
occurs between two transactions “A” and “B” when it can be
determined that transaction A has acquired two or more time
stamps that form an interval in time during which transaction
B acquired one or more time stamps. Thus, an overlap of time
stamp intervals occurs when transaction B acquires one or
more time stamps after the acquisition of a first time stamp by
transaction A, but before the acquisition of a second time
stamp by transaction A.

As shown in table 200 in FIG. 2, transaction 202 and
transaction 204 both begin at time 208, as shown in time
stamp counter (“TSC”) 206. At time 210, transaction 202
acquires a time stamp from TSC 206 (by executing an
RDTSCP instruction to acquire the time stamp) and sets the
variable T1 equal to the value of the time stamp. At time 212,
transaction 204 acquires a time stamp from TSC 206 and sets
the variable X1 equal to the value of the time stamp. At time
214, transaction 202 again acquires a time stamp from TSC
206 and sets the variable T2 equal to the value of the time
stamp. At time 216, both transaction 202 and transaction 204
end. In the example shown in FIG. 2, because transaction 202
acquired time stamps both before and after the acquisition of
the time stamp by transaction 204 (and, thus, T1<X1<T2), a
time stamp overlap has occurred between the transactions.
There is therefore no sequential execution order for transac-
tions 202 and 204, and these concurrent transactions violate
linearizability.

FIG. 3 illustrates a case in which linearizability is violated
because a mismatch exists between a memory access order
and a time stamp order for transactions 302 and 304. Note that
the variable C is initially equal to O.

As shown in table 300 in FIG. 3, transaction 302 and
transaction 304 begin at time 308, as shown in time stamp
counter (“TSC”) 306. At time 310, transaction 304 acquires a
time stamp from TSC 306 (by executing an RDTSCP instruc-
tion to acquire the time stamp) and sets the variable X1 equal
to the value of the time stamp. At time 312, transaction 302
sets a variable C equal to 1. At time 314, transaction 302
acquires a time stamp from TSC 306 and sets the variable T1
equal to the value of the time stamp. At time 316, transaction
304 sets a variable LC=C. At time 318, both transaction 302
and transaction 304 end. In the example shown in FIG. 3,
because X1<T1 and LC=1, the access order for the time
stamps is opposite the access order for the memory accesses.
There is therefore no sequential execution order for transac-
tions 202 and 204 and the transactions display an improper
precedence order with regard to operations performed by
processor 100. These concurrent transactions therefore vio-
late linearizability.

Temporal Isolation for Transactions

When transactional execution is supported concurrently
with non-transactional execution (i.e., where transactionally
executed instructions can concurrently access the same data
as non-transactionally executed instructions), various levels
of isolation for transactions may be enforced. For “weak
isolation,” only transactional memory accesses made by other
transactions have an effect on a given transaction. Thus, in a
system in which weak isolation is enforced, when a memory
location is read during a transaction, a non-transactional read
or write of the memory location has no effect on the transac-
tion, but a transactional write of the memory location effects
the transaction (e.g., may be an interfering memory access).
For “strong isolation,” all memory accesses, both transac-
tional and non-transactional, effect the transaction (e.g., may
be interfering memory accesses).
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The concept of isolation for transactions can be extended to
temporal isolation for transactions as “weak temporal isola-
tion” and “strong temporal isolation.” For weak temporal
isolation, time stamps in a given transaction should not form
overlapping intervals with time stamps from other transac-
tions or create inconsistent ordering between time stamps and
operations (e.g., memory accesses, etc.) in the transactions.
For strong temporal isolation, time stamps from either within
or outside of transactions (i.e., time stamps acquired when
executing instructions non-transactionally) should not fall
into intervals from time stamps inside transactions or form
inconsistent orderings with normal (i.e., non-transactional)
memory accesses. Thus, transactions should demonstrate a
combination of strong memory isolation and causal time
stamp access with regard to other transactional and non-
transactional memory accesses and time stamp acquisitions.

FIG. 4 illustrates a case in which strong temporal isolation
is not observed. Note that, for the operations in FIG. 4, non-
transaction 402 comprises instructions executed outside a
transaction (e.g., during “normal” execution) concurrently
with transaction 404. In addition, the variable C is initially
equal to 0.

As shown in table 400 in FIG. 4, transaction 404 begins at
time 408, as shown on time stamp counter (“TSC”) 406. At
time 410, transaction 404 acquires a time stamp from TSC
406 (by executing an RDTSCP instruction to acquire the time
stamp) and sets the variable X1 equal to the value of the time
stamp. At time 412, non-transaction 402 acquires a time
stamp from TSC 406 (by executing an RDTSCP instruction to
acquire the time stamp) and sets the variable NT1 equal to the
value of the time stamp. At time 414, non-transaction 402 sets
the variable C equal to 1. At time 416, transaction 404 sets
variable L.C equal to C. Transaction 404 then ends attime 418.

The pattern of transactional and non-transactional acquisi-
tion of time stamps and memory accesses shown in FIG. 4
does not violate either memory or time stamp order, nor does
it produce overlapping time stamp intervals. In addition, the
pattern of transactional and non-transactional acquisition of
time stamps and memory accesses shown in FIG. 4 does not
violate memory-based strong isolation semantics, because
transaction 404 is ordered behind non-transaction 402’s
memory access from a memory perspective. However, strong
temporal isolation, the combination of strong memory isola-
tion and causal time stamp access (i.e., time stamp access
order between transaction 404 and non-transaction 402) is not
observed because, at the end of transaction 404, L=1 and
X1<NT1.

A modification to the example in FIG. 4 demonstrates that
weak temporal isolation is insufficient for maintaining the
appearance of SLA when executing critical sections in trans-
actions. FIG. 5 illustrates a case showing that strong temporal
isolation should be used to avoid an apparent violation of
SLA. The distinction between FIGS. 4 and 5 is the addition of
the transaction (that starts at time 514 and ends at time 516),
which is called “empty” for this example because the trans-
action includes no time-stamp acquisitions or memory
accesses. Note that, the operations on the left side of table
500, despite being labeled “transaction 502,” include both
transactional and non-transactional operations.

As shown in table 500 in FIG. 5, transaction 504 begins at
time 508, as shown on time stamp counter (“TSC”) 506. At
time 510, transaction 504 acquires a time stamp from TSC
506 (by executing an RDTSCP instruction to acquire the time
stamp) and sets the variable X1 equal to the value of the time
stamp. At time 512, a non-transactional time-stamp acquisi-
tion operation acquires a time stamp from TSC 506 and sets
the variable T1 equal to the time stamp. The empty transac-
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tion 502 then begins at time 514 and ends at time 516. At time
518, a non-transactional operation sets the variable C equal to
1. Attime 520, transaction 504 sets the variable L.C equal to C.
Transaction then ends at time 522.

Assuming SLA, if X1<T1, then transaction 504 should
read the old value of C (and hence L.C should equal 0) because
transaction should have executed entirely before the empty
transaction 502, which in turn executed before the update to C
that occurs at time 518. Weak temporal isolation permits
transaction 504 to read the modified variable C, resulting in an
apparent violation of SLA for transaction 504. However,
strong temporal isolation preserves the appearance required
for transactions 502 and 504 in accordance with SLA. Thus,
strong temporal isolation can be used to avoid potential expo-
sure of the use of transactions to concurrently execute critical
sections.

Constraints for Transactions

In existing systems, transaction pairs with overlapping
execution spans (i.e., concurrent transactions) can be serial-
ized in disagreement with the order of time stamps taken
within the transactions, which can make a violation of SLA
apparent when concurrent transactions are used for executing
critical sections that are protected by the same lock. For
example, in existing systems, time stamps are not altered
within transactions to only show a fully serialized view, trans-
actions are not aborted to hide un-serializable situations, and
transaction serialization order is not influenced by taking time
stamps within the transaction. To avoid these issues and
enable proper concurrent execution of transactions for critical
sections, some embodiments operate in accordance with at
least one of the following constraints:

1. At all times, the set of currently active transactions
should not include more than one transaction that (a) is
to commit successfully and (b) includes a time-stamp
acquisition instruction (e.g., RDTSC, RDTSCP, etc.);

2. Time-stamp acquisition instructions outside of transac-
tions should be treated as mini-transactions (this con-
straint, in combination with constraint 1, helps to
enforce to strong temporal isolation);

3. If a transaction “A” acquires more than one time stamp,
no other transaction should be fully enclosed in the
largest time-stamp interval within A. In other words, no
second transaction “B” should start after the first time
stamp in A and commit before the last time stamp in A;
and

4. If a transaction “A” acquires more than one time stamp,
no other transaction should execute concurrently to the
largest time-stamp span within “A.”” In other words, no
second transaction “B” should be active between the first
time stamp in A and the last time stamp in A.

FIGS. 6-8 present timeline diagrams illustrating combina-
tions of transactions for threads T1 and T2 (which are
executed by a processor such as processor 100) that violate
(or do not violate) the first, third, and fourth constraints. In
FIGS. 6-8, each thread is indicated by a dashed line, with
transactions shown as boxes and with each instance of a
time-stamp acquisition instruction being indicated by R or R
with a number, such as “R1.” Time increases from left to right
in FIGS. 6-8.

Note that, although two “threads” are used in describing
the operations in FIGS. 6-8, in some embodiments other
combinations of entities (cores, threads, etc.) on processor
100 may perform the operations. For example, in some
embodiments, two cores (from cores 102-108) perform the
operations.

FIG. 6 presents a timeline diagram illustrating a violation
of'the first constraint in accordance with some embodiments.
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As shown in FIG. 6, thread T2 executes two transactions, 606
and 608, that include time-stamp acquisition instructions.
During transaction 606, thread T1 executes two transactions,
600 and 602, neither of which includes a time-stamp acqui-
sition instruction. Thus, there is no violation of the first con-
straint during transaction 606. However, while thread T2 is
executing transaction 608, thread T1 executes a transaction,
604, that includes a time-stamp acquisition instruction. A
violation of the first constraint therefore occurs during trans-
action 608.

FIG. 7 presents a timeline diagram illustrating a violation
ofthe third constraint in accordance with some embodiments.
As shown in FIG. 7, thread T1 executes three separate trans-
actions, 700, 702, and 704, each of which is at least partially
concurrent with a single transaction, 706, executed by thread
T2 (and none of which includes a time-stamp acquisition
instruction). During transaction 706, thread T2 executes three
time-stamp acquisition instructions, R1, R2, and R3. Trans-
actions 700 and 704 do not violate the third constraint because
they are not fully enclosed in the largest time stamp interval in
transaction 706 (i.e., R1 to R3). However, transaction 702
violates the third constraint because the second transaction is
fully enclosed in the largest time stamp interval in transaction
706.

FIG. 8 presents a timeline diagram illustrating a violation
of the fourth constraint in accordance with some embodi-
ments. As shown in FIG. 8, thread T1 executes three separate
transactions, 800, 802, and 804, each of which is at least
partially concurrent with a single transaction, 806, executed
by thread T2 (and none of which includes a time-stamp acqui-
sition instruction). During transaction 806, thread T2
executes three time-stamp acquisition instructions, R1, R2,
and R3. All of transactions 800, 804, and 806 violate the
fourth constraint because they execute (at least partially) con-
currently with the largest time-stamp span within transaction
806.

Processes for Executing Transactions

FIG. 9 presents a flowchart illustrating a process for
executing a transaction in the presence of time-stamp acqui-
sition instructions in accordance with some embodiments.
The operations shown in FIG. 9 are presented as a general
example of functions performed by some embodiments. The
operations performed by other embodiments include difter-
ent operations and/or operations that are performed in a dif-
ferent order. Additionally, although certain mechanisms are
used in describing the process, in some embodiments, other
mechanisms can perform the operations.

The process shown in FIG. 9 starts when core 102 in
processor 100 starts a transaction (step 900). As described
above, in some embodiments, core 102 starts a transaction
upon encountering a lock-acquiring instruction at the begin-
ning of a critical section of program code. In some of these
embodiments, HLE 126 (some or all of which can, as
described above, be located within core 102) detects the lock-
acquisition instruction and causes core 102 to start the trans-
action (and elide/ignore the lock-acquisition instruction).
Thus, in these embodiments, during the transaction, core 102
executes instructions from the critical section in the transac-
tion.

When starting the transaction, core 102 adds a predeter-
mined address to the transaction read set (step 902). In some
embodiments, adding the address to the transaction read set
comprises loading a copy of a cache line that includes the
predetermined address to a cache in core 102 in a read state
(e.g., in a “shared” coherency state, in which other cores/
caches are permitted to concurrently hold copies in the
“shared” coherency state). Loading the cache line as
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described causes HTM 124 to begin to monitor the address for
interfering memory accesses. Because the cache line is in the
read state, other transaction and non-transactional reads of the
cache line are permitted (i.e., HTM 124 does not detect a read
of'the cache line as an interfering access). However, HTM 124
detects writes to the cache line, both transactional and non-
transactional, as interfering accesses.

Although in some embodiments core 102 loads the cache
line to add the memory address to the transaction read set, in
some embodiments, adding the address to the transaction read
set comprises updating a record in HTM 124 or elsewhere
(without actually loading the cache line) and/or performing
some other operation to cause HTM 124 to begin to monitor
the address for interfering memory accesses.

In some embodiments, each of the cores 102-108 in the
processor uses the predetermined address in the same way
(i.e., adds the predetermined address to a transaction read set)
to record when a transaction for a critical section has been
started. In this way, each core’s HTM 124 can monitor the
location to determine if/when one of the cores adds the pre-
determined address to the write set, and can (if so configured)
abort the transaction, as described below.

Core 102 then proceeds to a next instruction in the trans-
action (step 904) and determines if the instruction is a time-
stamp acquisition instruction (step 906). If the instruction is a
time-stamp acquisition instruction (step 906), core 102 deter-
mines if the instruction is the first time stamp instruction in
the transaction (step 908). For example, if the instruction is a
RDTSC, RDTSCP, or one or more other instruction(s) that
cause core 102 to acquire a time stamp from time stamp
counter 122, core 102 determines if the instruction is the first
time-stamp acquisition instruction in the transaction.

If the time-stamp acquisition instruction is not the first
time-stamp acquisition instruction, core 102 aborts the trans-
action (step 910). For example, when aborting the transac-
tion, core 102 can halt processing instructions in the critical
section, restore a pre-transactional state of processor 102
(e.g., register values, processor state variables, etc.), and re-
try executing the critical section in a subsequent transaction.
In some embodiments, upon aborting the transaction a given
number of times (e.g., 1, 3, etc.), core 102 performs an error-
handling routine, which may include executing the transac-
tion using the above-described locks (i.e., returning to the
default behavior of the program code in the critical section),
or setting one or more forward-progress mechanisms to
enable a next attempt at the transaction to complete, etc.

By aborting the transaction in this way, core 102 operates in
accordance with at least some of the above-described con-
straints. For example, the third constraint is met because the
transaction, when the second time stamp would have been
acquired, is aborted, thereby avoiding the case where another
transaction could be fully enclosed in the largest time-stamp
interval for the transaction.

Otherwise, if the time-stamp acquisition instruction is the
first time-stamp acquisition instruction (step 908), core 102
adds the predetermined address to a transaction write set (step
912). In some embodiments, adding the address to the trans-
actions write set comprises upgrading the previously-loaded
copy of a cache line that includes the predetermined address
from the read state to a write state (e.g., the “exclusive” or
“modified” coherency state). Because the cache line has been
upgraded to the write state, both other transaction and non-
transactional reads or writes of the cache line are impermis-
sible (i.e., HTM 124 detects both reads and writes of the cache
line as interfering accesses). Similarly to adding the memory
address to the transaction read set, in some embodiments,
adding the address to the transaction write set comprises
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updating a record in HTM 124 or elsewhere (without actually
operating on a local copy of the cache line).

Depending on the configuration of processor 100, adding
the memory address to the transaction write set for core 102
can: (1) cause all entities in processor 100 executing transac-
tions with the predetermined address in their read set to abort,
or (2) cause core 102 to abort the transaction. For this
example, it is assumed that processor 100 is configured so that
all other transactions in processor 100 are aborted. By causing
the abortion of the other transactions in this way, core 102
operates in accordance with at least some or all of the above-
described constraints. For example, the first constraint is met
because the transaction, when the first time stamp has been
acquired, causes all other transactions to be aborted, thereby
enforcing the constraint that the set of currently active trans-
actions should not include more than one transaction that will
commit successfully and includes a time-stamp acquisition
instruction.

Core 102 then executes the instruction (step 914). As
described above, the instruction may be a time-stamp acqui-
sition instruction, which causes core 102 to request a time
stamp from time stamp counter 122. However, the instruction
may be some other instruction from program code. For
example, the instruction may be a memory access instruction
or another instruction that causes a conflict for the transaction
(e.g., amemory access instruction that interferes with another
transaction, an instruction that causes an error that is handled
by aborting the transaction, etc.), in which case, core 102
aborts the transaction (step 910). Note that the core 102’s
transaction can be aborted (step 910) if another transaction
upgrades a cache line with the predetermined memory
address to the write set (e.g., if another transaction encounters
a first time-stamp acquisition instruction).

If'the transaction is complete (i.e., if the instruction was the
last instruction in the critical section) (step 918), core 102
commits the transaction (step 920). When committing the
transaction, core 102 makes transactional changes (e.g.,
transactional writes to memory locations, state changes, etc.),
which were prevented from effecting the architectural state of
processor 100 during the transaction, visible to other entities
on processor 100, thereby committing the changes to the
architectural state of processor 100. Otherwise, if the trans-
action is not complete (i.e., if the instruction was not the last
instruction in the critical section), core 102 returns to step 904
to proceed to a next instruction in the transaction.

FIG. 10 presents a flowchart illustrating a process for
executing a transaction in the presence of time-stamp acqui-
sition instructions in accordance with some embodiments.
The operations shown in FIG. 10 are presented as a general
example of functions performed by some embodiments. The
operations performed by other embodiments include difter-
ent operations and/or operations that are performed in a dif-
ferent order. Additionally, although certain mechanisms are
used in describing the process, in some embodiments, other
mechanisms can perform the operations. Moreover, the
operations shown in FIG. 10 use a transaction time stamp
indicator to keep a record of active transactions following the
encounter of a time-stamp acquisition instruction in a trans-
action. The transaction time stamp indicator can be main-
tained in any suitable memory location (vector, scalar, etc.) in
processor 100 from which a state of individual bits can be
read/determined. For example, in some embodiments, a dedi-
cated memory location is used to store a transaction time
stamp vector that is used as the transaction time stamp indi-
cator.

The process shown in FIG. 10 starts when core 102 in
processor 100 starts a transaction (step 1000). As described
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above, in some embodiments, core 102 starts a transaction
upon encountering a lock-acquiring instruction at the begin-
ning of a critical section of program code. In some of these
embodiments, HLE 126 (some or all of which can, as
described above, be located within core 102) detects the lock-
acquisition instruction and causes core 102 to start the trans-
action (and elide/ignore the lock-acquisition instruction).
Thus, in these embodiments, during the transaction, core 102
executes instructions from the critical section in the transac-
tion.

Core 102 then proceeds to a next instruction in the trans-
action (step 1002) and determines if the instruction is a time-
stamp acquisition instruction (step 1004). If the instruction is
a time-stamp acquisition instruction (step 1004), core 102
determines if the instruction is the first time stamp instruction
in the transaction (step 1006). For example, if the instruction
is a RDTSC, RDTSCP, or one or more other instruction(s)
that cause core 102 to acquire a time stamp from time stamp
counter 122, core 102 may determine if the instruction is the
first time-stamp acquisition instruction in the transaction.

If the time-stamp acquisition instruction is not the first
time-stamp acquisition instruction, core 102 aborts the trans-
action (step 1008). For example, when aborting the transac-
tion, core 102 can halt processing instructions in the critical
section, restore a pre-transactional state of processor 102
(e.g., register values, processor state variables, etc.), and re-
try executing the critical section in a subsequent transaction.
In some embodiments, upon aborting the transaction a given
number of times (e.g., 1, 3, etc.), core 102 performs an error-
handling routine, which may include executing the transac-
tion using the above-described locks (i.e., returning to the
default behavior of the program code in the critical section),
or setting one or more forward-progress mechanisms to
enable a next attempt at the transaction to complete, etc.

By aborting the transaction in this way, core 102 operates in
accordance with at least some or all of the above-described
constraints. For example, the third constraint is met because
the transaction, when the second time stamp would have been
acquired, is aborted, thereby avoiding the case where another
transaction could be fully enclosed in the largest time-stamp
interval for the transaction. The same is true for the fourth
constraint.

Otherwise, if the time-stamp acquisition instruction is the
first time-stamp acquisition instruction (step 1006), core 102
determines if the transaction time stamp vector (which is
simply called “vector” in FIG. 10) is clear (step 1012). In
some embodiments, the transaction time stamp vector com-
prises a number of bits equal to a maximum number of con-
current transactions in processor 100, with each bit represent-
ing an entity that executes the corresponding transaction (e.g.,
bit 0 representing core 102, bit 1 representing core 104, etc.).
Thus, if processor 100 can support a maximum number of N
concurrent transactions (N=4, 12, etc.) the transaction time
stamp vector includes N bits. Generally, the transaction time
stamp vector is used to indicate when an entity executing a
transaction has encountered a time-stamp acquisition instruc-
tion to enable the operations shown in FIG. 10. In this descrip-
tion, when a bit in the transaction time stamp vector is set, the
bit is equal to a first predetermined value such as 1, and when
the bit is cleared, the bit is equal to a second predetermined
value such as O.

Ifthe transaction time stamp vector is not clear (step 1010),
and hence another transaction has set the bits in the vector
(because that transaction encountered a time-stamp acquisi-
tion instruction), core 102 aborts the transaction (step 1008).
By aborting the transaction in this way, core 102 operates in
accordance with at least some or all of the above-described
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constraints. For example, the first constraint is met because
the transaction, if another transaction has already acquired a
time stamp, is aborted, thereby enforcing the constraint that
the set of currently active transactions should not include
more than one transaction that will commit successtully and
includes a time-stamp acquisition instruction.

Otherwise, if the transaction time stamp vector is clear
(step 1010), core 102 sets all the bits in the transaction time
stamp vector (step 1012). As described above, setting the bits
in this way serves to record that the transaction executing on
core 102 has encountered a time-stamp acquisition instruc-
tion so that other entities on processor 100 (cores, threads,
etc.) should abort if they encounter a time-stamp acquisition
instruction during a transaction (until the transaction time
stamp vector is cleared, as described below).

Core 102 then executes the instruction (step 1014). As
described above, the instruction may be a time-stamp acqui-
sition instruction, which causes core 102 to request a time
stamp from time stamp counter 122. However, the instruction
may be some other instruction from program code. For
example, the instruction may be a memory access instruction
or another instruction that causes a conflict for the transaction
(step 1016) (e.g., a memory access instruction that interferes
with another transaction, an instruction that causes an error
that is handled by aborting the transaction, etc.), in which
case, core 102 aborts the transaction (step 1008).

If'the transaction is not complete (i.e., if the instruction was
not the last instruction in the critical section) (step 1018), core
102 returns to step 1002 to proceed to a next instruction in the
transaction.

Otherwise, if the transaction is complete, core 102 clears
the corresponding bit in the transaction time stamp vector
(step 1020). Recall that the transaction time stamp vector
includes a bit for every entity in processor 100 that may
execute a concurrent transaction. By clearing the bit as
described (if the bit was set), core 102 records that the trans-
action is complete and is to be committed. Whether or not
core 102 is the transaction that sets the bits, core 102 clears the
corresponding bit in the vector. In this way, each transaction
that commits after a transaction has set the bits in the trans-
action time stamp vector clears the corresponding bit. Only
when the transaction time stamp vector is clear is another
transaction enabled to set the bits in the vector—and thus
enabled to execute a time-stamp acquisition instruction. As
described above, this helps to prevent one or more of the
constraints from being violated.

After clearing the corresponding bit in the transaction time
stamp vector core 102 commits the transaction (step 1022).
When committing the transaction, core 102 makes transac-
tional changes (e.g., transactional writes to memory loca-
tions, state changes, etc.), which were prevented from effect-
ing the architectural state of processor 100 during the
transaction, visible to other entities on processor 100, thereby
committing the changes to the architectural state of processor
100.

FIGS. 11A-11B (collectively “FIG. 11”) present a flow-
chart illustrating a process for executing a transaction in the
presence of time-stamp acquisition instructions in accor-
dance with some embodiments. The operations shown in FIG.
11 are presented as a general example of functions performed
by some embodiments. The operations performed by other
embodiments include different operations and/or operations
that are performed in a different order. Additionally, although
certain mechanisms are used in describing the process, in
some embodiments, other mechanisms can perform the
operations. Moreover, the operations shown in FIG. 11 use a
transaction time stamp indicator to keep a record of active
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transactions following the encounter of a time-stamp acqui-
sition instruction in a transaction. The transaction time stamp
indicator can be maintained in any suitable memory location
(vector, scalar, etc.) in processor 100 from which a state of
individual bits can be read/determined. For example, in some
embodiments, a dedicated memory location is used to store a
transaction time stamp vector that is used as the transaction
time stamp indicator.

The process shown in FIG. 11 starts when core 102 in
processor 100 starts a transaction (step 1100). As described
above, in some embodiments, core 102 starts a transaction
upon encountering a lock-acquiring instruction at the begin-
ning of a critical section of program code. In some of these
embodiments, HLE 126 (some or all of which can, as
described above, be located within core 102) detects the lock-
acquisition instruction and causes core 102 to start the trans-
action (and elide/ignore the lock-acquisition instruction).
Thus, in these embodiments, during the transaction, core 102
executes instructions from the critical section in the transac-
tion.

Core 102 then proceeds to a next instruction in the trans-
action (step 1102) and determines if the instruction is a time-
stamp acquisition instruction (step 1104). If the instruction is
a time-stamp acquisition instruction (step 1104), core 102
determines if all other bits in the transaction time stamp
vector (which is simply called “vector” in FIG. 11) are clear
(step 1106). For example, if the instruction is a RDTSC,
RDTSCP, or one or more other instruction(s) that cause core
102 to acquire a time stamp from time stamp counter 122,
core 102 may determine if bits in the transaction time stamp
vector other than a bit associated with core 102 are clear. In
some embodiments, the transaction time stamp vector com-
prises a number of bits equal to a maximum number of con-
current transactions in processor 100, with each bit represent-
ing an entity that executes the corresponding transaction (e.g.,
bit 0 representing core 102, bit 1 representing core 104, etc.).
Thus, if processor 100 can support a maximum number of N
concurrent transactions (N=4, 12, etc.) the transaction time
stamp vector includes N bits. Generally, the transaction time
stamp vector is used to indicate when an entity executing a
transaction has encountered a time-stamp acquisition instruc-
tion to enable the operations shown in FIG. 11. In this descrip-
tion, when a bit in the transaction time stamp vector is set, the
bit is equal to a first predetermined value such as 1, and when
the bit is cleared, the bit is equal to a second predetermined
value such as O.

Note that, unlike the processes shown in FIGS. 9 and 10, in
the process shown in FI1G. 11, there is no check (see, e.g., step
1006 in FIG. 10) to determine if the time-stamp acquisition
instruction is the first time-stamp acquisition instruction (and,
thus, there is no abortion of the transaction based on the
check). This is true because the embodiment shown in FIG.
11 permits multiple time stamps to be acquired in a given
transaction, as long as the remaining conditions shown in
FIG. 11 are met. That is, a given transaction may acquire more
than one time stamp, but other concurrent transactions should
be aborted upon attempting to acquire a time stamp (i.e., after
the given transaction acquires a time stamp), and other trans-
actions should not be started until after a last time stamp for
the given transaction. In these embodiments, a simple way to
handle the second condition (i.e., the starting of subsequent
transactions) is to prevent any transactions from starting until
the given transaction commits. Another way to handle the
second condition is that other transactions may be specula-
tively permitted to begin after a time stamp (essentially pre-
dicting that the time stamp is the last time stamp for the given
transaction), but the other transactions should be aborted if
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the given transaction subsequently acquires a time stamp. In
these embodiments, other transactions should not be allowed
to commit until the given transaction commits, thereby hold-
ing the other transactions active to enable aborting the other
transactions, should abortion become necessary. In this way,
the third and fourth constraints are met for the embodiment
shown in FIG. 11.

If atleast one of the other bits in the transaction time stamp
vector is set (and hence is not clear) (step 1106), core 102
aborts the transaction (step 1108). For example, when abort-
ing the transaction, core 102 may halt processing instructions
in the critical section, restore a pre-transactional state of
processor 102 (e.g., register values, processor state variables,
etc.), and re-try executing the critical section in a subsequent
transaction. In some embodiments, upon aborting the trans-
action a given number of times (e.g., 1, 3, etc.), core 102
performs an error-handling routine, which may include
executing the transaction using the above-described locks
(i.e., returning to the default behavior of the program code in
the critical section), or setting one or more forward-progress
mechanisms to enable a next attempt at the transaction to
complete, etc.

By aborting the transaction in this way, core 102 operates in
accordance with at least some or all of the above-described
constraints. For example, the first constraint is met because
core 102 aborts the transaction to avoid acquiring a time
stamp ata time when another transaction may has a prior time
stamp and may commit. The fourth constraint is also met.

Otherwise, if the other bits in the transaction time stamp
vector are clear (step 1106), core 102 sets a corresponding bit
in the transaction time stamp vector (step 1110). In these
embodiments, the corresponding bit is a bit in the transaction
time stamp vector associated with core 102. Setting the cor-
responding bit as described serves to record that the transac-
tion executing on core 102 has encountered a time-stamp
acquisition instruction so that other entities on processor 100
(cores, threads, etc.) should abort if they encounter a time-
stamp acquisition instruction during a transaction (until the
transaction time stamp vector is cleared, as described below).

Core 102 then executes the instruction (step 1112). As
described above, the instruction may be a time-stamp acqui-
sition instruction, which causes core 102 to request a time
stamp from time stamp counter 122. However, the instruction
may be some other instruction from program code. For
example, the instruction may be a memory access instruction
or another instruction that causes a conflict for the transaction
(step 1114) (e.g., a memory access instruction that interferes
with another transaction, an instruction that causes an error
that is handled by aborting the transaction, etc.), in which
case, core 102 clears the corresponding bit in the transaction
time stamp vector (step 1116) and aborts the transaction (step
1108).

By clearing the corresponding bit in the transaction time
stamp vector as described when aborting the transaction, core
102 indicates to other entities on processor 100 that core 102
is no longer executing a transaction during which core 102
acquired a time stamp. When all bits in the transaction time
stamp vector are cleared, an entity can set a corresponding bit
and continue a transaction after acquiring a time stamp.

If'the transaction is not complete (i.e., if the instruction was
not the last instruction in the critical section) (step 1118), core
102 returns to step 1102 to proceed to a next instruction in the
transaction. Otherwise, if the transaction is complete, core
102 clears the corresponding bit in the transaction time stamp
vector (step 1120). By clearing the corresponding bit as
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described (if the bit was set), core 102 registers that the
transaction is complete and is to be committed or aborted as
described below.

Core 102 then determines if all of the bits in the transaction
time stamp vector are clear (step 1122). In other words, core
102 determines if another entity in processor 100 is still
engaged in a transaction during which a time stamp was
acquired. Ifall of the bits in the transaction time stamp vector
are clear, core 102 commits the transaction (step 1124). When
committing the transaction, core 102 makes transactional
changes (e.g., transactional writes to memory locations, state
changes, etc.), which were prevented from effecting the archi-
tectural state of processor 100 during the transaction, visible
to other entities on processor 100, thereby committing the
changes to the architectural state of processor 100.

Otherwise, if all of the bits in the transaction time stamp
vector are not clear (step 1122), and hence another entity in
processor 100 is still engaged in a transaction during which a
time stamp was acquired, core 102 determines if the commit-
ment or abortion of the transaction should be delayed (step
1126). In this operation, core 102 determines if a predeter-
mined time (e.g., 10 microseconds, 50 microseconds, etc.)
should be allowed to pass and another check should be made
to determine if all the bits in the transaction time stamp vector
are cleared. If the decision is to wait, core 102 waits for the
predetermined time and then returns to step 1122 to deter-
mine if all the bits in the transaction time stamp vector are
clear. Otherwise, if the determination is not to wait, core 102
aborts the transaction (step 1128).

As described above, in some embodiments, a given trans-
action may acquire more than one time stamp, but other
transactions should not be started until after a last time stamp
for the given transaction. In these embodiments, other trans-
actions may be speculatively permitted to begin after a time
stamp, but these other transactions should be aborted if the
given transaction subsequently acquires a time stamp. By
delaying as described for step 1126, these embodiments pro-
vide an opportunity for all transactions to complete and clear
the corresponding bits in the transaction time stamp vector.
However, by possibly aborting after delaying a predeter-
mined time, these embodiments ensure that a failed transac-
tion for another entity does not leave a bit set indefinitely and
thereby indefinitely hold up core 102 (i.e., when an entity is
no longer executing a transaction, but has not cleared the
corresponding bit in the transaction time stamp vector, such
as with a crash or error in the other entity).

FIGS. 12A-12B (collectively “FIG. 12”) present a flow-
chart illustrating a process for executing a transaction in the
presence of time-stamp acquisition instructions in accor-
dance with some embodiments. The operations shown in FIG.
12 are presented as a general example of functions performed
by some embodiments. The operations performed by other
embodiments include different operations and/or operations
that are performed in a different order. Additionally, although
certain mechanisms are used in describing the process, in
some embodiments, other mechanisms can perform the
operations. Moreover, in the operations shown in FIG. 12,
various messages are exchanged when executing a transac-
tion. Generally, these messages (e.g., probes to a predeter-
mined address, “can commit” messages, ‘“need to wait”
responses, etc.) can be implemented in any type of message/
frame/packet that can be exchanged between entities (e.g.,
cores, threads, etc.) in processor 100.

Note that the embodiment shown in FIG. 12 permits mul-
tiple time stamps to be acquired in a given transaction, as long
as the remaining conditions shown in FIG. 12 are met. Gen-
erally, in the embodiment shown in FIG. 12, entities on pro-
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cessor 100 can acquire any number of time stamps, as long as
another entity on processor does not acquire time stamps
between any two time stamps for the entity. In these embodi-
ments, when executing a time-stamp acquisition instruction,
the entities on processor 100 broadcast probes to a predeter-
mined address, which can be any legal memory address that
can be accessed by entities on processor 100. The probes
indicate to other entities on processor 100 that a time-stamp
acquisition instruction has been executed during a transaction
by the corresponding entity. The entities on processor 100
monitor for such probes and use received probes to determine
when a transaction should be aborted to avoid transactions
that include overlapping time stamp intervals (which, as
described above, may make violations of SLA apparent).

The process shown in FIG. 12 starts when core 102 in
processor 100 starts a transaction (step 1200). As described
above, in some embodiments, core 102 starts a transaction
upon encountering a lock-acquiring instruction at the begin-
ning of a critical section of program code. In some of these
embodiments, HLE 126 (some or all of which can, as
described above, be located within core 102) detects the lock-
acquisition instruction and causes core 102 to start the trans-
action (and elide/ignore the lock-acquisition instruction).
Thus, in these embodiments, during the transaction, core 102
executes instructions from the critical section in the transac-
tion.

Core 102 then proceeds to a next instruction in the trans-
action (step 1202) and determines if the instruction is a time-
stamp acquisition instruction (step 1204). For example, core
102 may determine if the instruction is a RDTSC, RDTSCP,
or one or more other instruction(s) that cause core 102 to
acquire a time stamp from time stamp counter 122.

If the instruction is a time-stamp acquisition instruction
(step 1204), core 102 determines if the time-stamp acquisi-
tion instruction is the first time-stamp acquisition instruction
in the transaction (step 1206). If the time-stamp acquisition
instruction is not the first time-stamp acquisition instruction
in the transaction (step 1206), core 102 determines if a probe
for a predetermined address has been received (step 1208). If
such a probe has been received, another entity in processor
100 has encountered one time-stamp acquisition instruction
while executing a transaction and core 102 should not con-
tinue executing the transaction. For this reason, core 102
aborts the transaction (step 1210). By executing the transac-
tion in this way, core 102 ensures that no overlapping time-
stamp intervals can occur in processor 100.

If the time-stamp acquisition instruction is not the first
time-stamp acquisition instruction in the transaction (step
1206) or if no probes have been received for the predeter-
mined address (step 1208), core 102 broadcasts a probe for a
predetermined address (step 1212). As described above,
broadcasting the probe comprises sending a message to other
entities in processor 100 that identifies the predetermined
address (e.g., an address of a memory location). The other
entities interpret the probe for the address as an indication that
core 102 has encountered a time-stamp acquisition instruc-
tion during a transaction. In response, the other entities may
send a probe response acknowledging the probe for the pre-
determined address or may send “need to wait” responses, as
described below.

After broadcasting the probe for the predetermined
address, core 102 waits for all the probe responses (step
1214). Specifically, core 102 waits for the above-described
acknowledgement responses or “need to wait” responses
from each other entity. Core 102 waits in this way to ensure
that other entities have received the probe for the predeter-
mined address. Note that core 102 stores or otherwise records
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“need to wait” responses and the entity in processor 100 from
which they were received to enable step 1222.

Although not shown in FI1G. 12, if core 102 does not receive
all probe responses within a specified time, e.g., 20 microsec-
onds, core 102 may perform a remedial action. For example,
core 102 may abort the transaction, resend the probe for the
predetermined address, send a probe for non-responding enti-
ties, and/or perform one or more other remedial actions.

Core 102 then executes the instruction (step 1216). As
described above, the instruction may be a time-stamp acqui-
sition instruction, which causes core 102 to request a time
stamp from time stamp counter 122. However, the instruction
may be some other instruction from program code. For
example, the instruction may be a memory access instruction
or another instruction that causes a conflict for the transaction
(step 1218) (e.g., a memory access instruction that interferes
with another transaction, an instruction that causes an error
that is handled by aborting the transaction, etc.), in which
case, core 102 aborts the transaction (step 1210).

Ifthe transaction is not complete (i.e., if the instruction was
not the last instruction in the critical section) (step 1220), core
102 returns to step 1202 to proceed to a next instruction in the
transaction.

Otherwise, if the transaction is complete, core 102 deter-
mines if one or more “need to wait” probe responses were
received from other entities (step 1222). In some embodi-
ments, a “need to wait” response is sent from another entity in
response to a probe from core 102 (see step 1212) when the
other entity has executed a time-stamp acquisition instruction
during a transaction (perhaps before the transaction executed
by core 102 started). After receiving the “need to wait”
response, core 102 waits for a “can commit” message from
the other entity that indicates that the other entity has com-
pleted the corresponding transaction and hence core 102 “can
commit” core 102’s transaction. If one or more “need to wait”
probe responses were received from other entities (step
1222), core 102 waits for corresponding “can commit” mes-
sages (step 1226) and then commits the transaction (step
1224) (or, although not shown, can abort the transaction if
“can commit” messages are not received in a predetermined
time such as 20 microseconds).

Otherwise, if no “need to wait” responses were received,
core 102 commits the transaction (step 1224). When commit-
ting the transaction, core 102 makes transactional changes
(e.g., transactional writes to memory locations, state changes,
etc.), which were prevented from effecting the architectural
state of processor 100 during the transaction, visible to other
entities on processor 100, thereby committing the changes to
the architectural state of processor 100.

FIG. 13 presents a flowchart illustrating a process for
executing a transaction in the presence of time-stamp acqui-
sition instructions in accordance with some embodiments.
The operations shown in FIG. 13 are presented as a general
example of functions performed by some embodiments. The
operations performed by other embodiments include difter-
ent operations and/or operations that are performed in a dif-
ferent order. Additionally, although certain mechanisms are
used in describing the process, in some embodiments, other
mechanisms can perform the operations. Moreover, in the
operations shown in FIG. 13, various messages are
exchanged when executing a transaction. Generally, these
messages (e.g., probes to a predetermined address, “can com-
mit” messages, “need to wait” responses, etc.) can be imple-
mented in any type of message/frame/packet that can be
exchanged between entities (e.g., cores, threads, etc.) in pro-
cessor 100.
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The embodiment shown in FIG. 13 is described from the
perspective core 104 (which is an entity in processor 100
other than core 102) while core 102 carries on at least some of
the operations shown in FIG. 12 (e.g., one or more of steps
1212, 1226, etc.). Although FIG. 13 is described using core
104, the other entity could be any core, thread, etc. in proces-
sor 100. Additionally, the operations performed by core 102
could be performed by another entity on processor 100. Gen-
erally, any two entities on processor 100 that can communi-
cate as described could perform the actions of FIGS. 12-13.
The embodiment shown in FIG. 13 permits multiple time
stamps to be acquired in a given transaction (as initially
described for FIG. 12), as long as the conditions shown in
FIG. 13 are met.

The process shown in FIG. 13 starts when core 104 in
processor 100 starts a transaction (step 1300). As described
above, in some embodiments, core 104 starts a transaction
upon encountering a lock-acquiring instruction at the begin-
ning of a critical section of program code. In some of these
embodiments, HLE 126 (some or all of which can, as
described above, be located within core 104) detects the lock-
acquisition instruction and causes core 104 to start the trans-
action (and elide/ignore the lock-acquisition instruction).
Thus, in these embodiments, during the transaction, core 104
executes instructions from the critical section in the transac-
tion.

Core 104 then proceeds to a next instruction in the trans-
action (step 1302) and executes the instruction (step 1304).
While executing the instruction, core 104 monitors commu-
nications to determine if a probe for a predetermined address
has been received (step 1306). As described above, core 102
broadcasts the probe for the predetermined address when
executing a time-stamp acquisition instruction (see, e.g., step
1212).

If'a probe for the predetermined address has been received
(step 1306), core 104 determines if a time stamp has been
acquired during the transaction (step 1308). In some embodi-
ments, core 104 keeps a record (a register, an indicator bit, a
variable, etc.) that indicates whether a time-stamp acquisition
instruction has been encountered during the transaction (and,
hence, a time stamp has been acquired) that is used to make
the determination. If no time stamp has been acquired during
the transaction (step 1308), core 104 sends an acknowledge-
ment message that acknowledges the receipt of the probe
(step 1310). The acknowledge message informs core 102 that
core 104 has not executed a time-stamp acquisition instruc-
tion during the transaction, and thereby informs core 102 that
it is permissible for core 102 to acquire a subsequent time
stamp.

Otherwise, if a time stamp has been acquired during the
transaction (step 1308), core 104 sends a “need to wait”
response (step 1312). The “need to wait” response informs
core 102 that core 104 has acquired at least one time stamp
during the transaction. As described above, core 102 should
notcommit core 102’s transaction until it can be sure that core
104 will not acquire a second time stamp (recall that core 102
acquiring a time stamp between two time stamps acquired by
core 104 means that the time stamp acquired by core 102
overlaps a time stamp interval on core 104, which makes
apparent a violation of SLA). For this reason, upon receiving
the “need to wait” response, core 102 delays committing core
102’s transaction until a “can commit™ message is received in
core 102 from core 104.

If'the transaction is not complete (i.e., if the instruction was
not the last instruction in the critical section) (step 1314), core
104 returns to step 1302 to proceed to a next instruction in the
transaction.
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Otherwise, if the transaction is complete, core 104 deter-
mines if a “need to wait” response was received (step 1316).
The “need to wait” response described in step 1316 would
have been received (from core 102 or another entity) in
response to a probe for the predetermined address sent if a
time stamp was acquired during core 104’s transaction. When
a “need to wait” response was received, core 104 waits for a
corresponding “can commit” message (step 1318). The “can
commit” message indicates to core 104 that the entity in
processor 100 that sent the “need to wait” response has com-
pleted the corresponding transaction. It is therefore safe for
core 104 to commit core 104’s transaction (in that core 104
can no longer acquire a time stamp that overlaps with a time
stamp interval for the other entity). Thus, for each “need to
wait” response that was received (step 1316), core 104 waits
for the corresponding “can commit” message (step 1318).

Next, if core 104 sent one or more “need to wait” responses
(step 1320), core 104 sends corresponding “can commit”
responses (step 1322). As described, these “can commit”
responses indicate to the receiving entity that the receiving
entity can safely commit a transaction without concern that
core 104 will acquire a subsequent time stamp because core
104 is preparing to commit core 104’s corresponding trans-
action.

Core 104 then commits core 104°s transaction (step 1324).
When committing the transaction, core 104 makes transac-
tional changes (e.g., transactional writes to memory loca-
tions, state changes, etc.), which were prevented from effect-
ing the architectural state of processor 100 during the
transaction, visible to other entities on processor 100, thereby
committing the changes to the architectural state of processor
100.

In some embodiments, instead of waiting/delaying the
commit (see, e.g., steps 1226 and 1318), an entity in processor
100 may continue to execute program code beyond the end of
the current transaction, adding the executed program code to
the transaction (i.e., handling the execution of the program
code as if it was originally part of the transaction). When the
“can commit” message is eventually received, the entity
handles the transaction as described. In some embodiments,
this extension of the transaction is sustained for a limited time
(e.g., 20 microseconds, etc.) before the transaction is aborted.

The foregoing descriptions of embodiments have been pre-
sented only for purposes of illustration and description. They
are not intended to be exhaustive or to limit the embodiments
to the forms disclosed. Accordingly, many modifications and
variations will be apparent to practitioners skilled in the art.
Additionally, the above disclosure is not intended to limit the
embodiments. The scope of the embodiments is defined by
the appended claims.

What is claimed is:

1. A method for handling operations during a transaction in
a processor, wherein one or more attempts are made to
acquire timestamps during the transaction, the method com-
prising:

monitoring acquisition of time stamps during the transac-

tion, wherein each time stamp is acquired from a time
stamp counter in the processor based on executing a
corresponding time-stamp acquisition instruction; and
preventing acquisition of a time stamp that meets a prede-
termined condition, the time stamp meeting the prede-
termined condition when the time stamp can be used to
determine that one or more transactions executed con-
currently, wherein the preventing comprises aborting the
transaction or at least one other concurrent transaction
when one or more time stamps and one or more opera-
tions in the transaction or the at least one other concur-
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rent transaction make apparent an inconsistent ordering
between the transaction and the at least one other con-
current transaction.

2. The method of claim 1, wherein aborting the transaction
or at least one other concurrent transaction comprises:

aborting the transaction or at least one other concurrent

transaction when one or more time stamps in the trans-
action form an overlapping interval with one or more
time stamps in the at least one other concurrent transac-
tion.

3. The method of claim 1, wherein aborting the transaction
or at least one other concurrent transaction comprises:

when a time stamp has been acquired during the transac-

tion and transactional results are to be committed to an
architectural state of the processor, aborting at least one
other concurrent transaction that has acquired or
attempts to acquire a time stamp.

4. The method of claim 1, wherein aborting the transaction
or at least one other concurrent transaction comprises:

aborting the transaction or at least one other concurrent

transaction when two or more time stamps are acquired
during the transaction and the at least one other concur-
rent transaction starts and finishes within a largest time-
stamp interval during the transaction.

5. The method of claim 1, wherein aborting the transaction
or at least one other concurrent transaction comprises:

aborting the transaction or at least one other concurrent

transaction when two or more time stamps are acquired
during the transaction and the at least one other concur-
rent transaction executes concurrently to a largest time
stamp interval in the transaction.

6. The method of claim 1, further comprising:

when a time-stamp acquisition instruction is executed dur-

ing the transaction in concurrent non-transactional
execution, treating the time-stamp acquisition instruc-
tion as a concurrent transaction.

7. A core comprising one or more circuits for executing
instructions, the core handling operations during a transac-
tion, wherein one or more attempts are made to acquire times-
tamps during the transaction, wherein the core is configured
to:

monitor acquisition of time stamps during the transaction,

wherein each time stamp is acquired from a time stamp
counter based on executing a corresponding time-stamp
acquisition instruction; and

prevent acquisition of a time stamp that meets a predeter-

mined condition, the time stamp meeting the predeter-
mined condition when the time stamp can be used to
determine that one or more transactions executed con-
currently, wherein the preventing comprises aborting the
transaction or at least one other concurrent transaction
when one or more time stamps and one or more opera-
tions in the transaction or the at least one other concur-
rent transaction make apparent an inconsistent ordering
between the transaction and the at least one other con-
current transaction.

8. The core of claim 7, wherein aborting the transaction or
at least one other concurrent transaction comprises:

aborting the transaction or at least one other concurrent

transaction when one or more time stamps in the trans-
action form an overlapping interval with one or more
time stamps in the at least one other concurrent transac-
tion.

9. The core of claim 7, wherein aborting the transaction or
at least one other concurrent transaction comprises:

when a time stamp has been acquired during the transac-

tion and transactional results are to be committed to an
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architectural state, aborting at least one other concurrent
transaction that has acquired or attempts to acquire a
time stamp.

10. The core of claim 7, wherein aborting the transaction or
at least one other concurrent transaction comprises:

aborting the transaction or at least one other concurrent

transaction when two or more time stamps are acquired
during the transaction and the at least one other concur-
rent transaction starts and finishes within a largest time-
stamp interval during the transaction.

11. The core of claim 7, wherein aborting the transaction or
at least one other concurrent transaction comprises:

aborting the transaction or at least one other concurrent

transaction when two or more time stamps are acquired
during the transaction and the at least one other concur-
rent transaction executes concurrently to a largest time
stamp interval in the transaction.

12. The core of claim 7, wherein the core is further config-
ured to:

when a time-stamp acquisition instruction is executed dur-

ing the transaction in concurrent non-transactional
execution, treat the time-stamp acquisition instruction as
a concurrent transaction.

13. A processor that handles operations during a transac-
tion, wherein one or more attempts are made to acquire times-
tamps during the transaction, comprising:

one or more cores;

a time stamp counter; and

a memory coupled to the one or more cores, wherein the

memory is configured to store instructions and data for
the one or more cores;

wherein at least one core is configured to:

monitor acquisition of time stamps during the transac-
tion, wherein each time stamp is acquired from the
time stamp counter based on executing a correspond-
ing time-stamp acquisition instruction; and

prevent acquisition of a time stamp that meets a prede-
termined condition, the time stamp meeting the pre-
determined condition when the time stamp can be
used to determine that one or more transactions
executed concurrently, wherein the preventing com-
prises aborting the transaction or at least one other
concurrent transaction when one or more time stamps
and one or more operations in the transaction or the at
least one other concurrent transaction make apparent
an inconsistent ordering between the transaction and
the at least one other concurrent transaction.

14. The processor of claim 13, wherein, aborting the trans-
action or at least one other concurrent transaction comprises:

aborting the transaction or at least one other concurrent

transaction when one or more time stamps in the trans-
action form an overlapping interval with one or more
time stamps in the at least one other concurrent transac-
tion.

15. The processor of claim 13, wherein aborting the trans-
action or at least one other concurrent transaction comprises:

when a time stamp has been acquired during the transac-

tion and transactional results are to be committed to an
architectural state of the processor, aborting at least one
other concurrent transaction that has acquired or
attempts to acquire a time stamp.

16. The processor of claim 13, wherein, aborting the trans-
action or at least one other concurrent transaction comprises:

aborting the transaction or at least one other concurrent

transaction when two or more time stamps are acquired
during the transaction and the at least one other concur-
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rent transaction starts and finishes within a largest time-
stamp interval during the transaction.
17. The processor of claim 13, wherein aborting the trans-
action or at least one other concurrent transaction comprises:
aborting the transaction or at least one other concurrent
transaction when two or more time stamps are acquired
during the transaction and the at least one other concur-
rent transaction executes concurrently to a largest time
stamp interval in the transaction.
18. The processor of claim 13, wherein the core is further
configured to:
when a time-stamp acquisition instruction is executed dur-
ing the transaction in concurrent non-transactional
execution, treat the time-stamp acquisition instruction as
a concurrent transaction.
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